

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

Features

- Narrow 499 mm radome for reduced windloading and easier zoning
- MIMO 4x4 in low-band and mid-band x2 (L/LC and RC/R)
- TDD beamforming 8T8R 3300-4200 (Horizontal spacing 42mm)
- Integrated and field replaceable mRET
- ACU model number: ACU-X20-N4
- Compliant with AISG v2.0 and 3GPP
- Mechanical downtilt kit included
- Optional with Direct Pipe No Tilt mounting hardware (Model name suffix -V-J20)

		FDD							TDD			
Frequency Range (MHz) (2x) 617-		2x) 617-894 (4x) 1695-2690					(8T8R) 3300-4200					
EW	Array	■ R1	■ R2	■ Y1	■ Y2	■ Y3	■ Y4	■ P1	■ P2	■ P3	■ P4	
OVERVIEW	C	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20	
	Connector	4 PORTS		8 PORTS			8 PORTS					
PRODUCT	Polarization	XP	OL	XPOL			XPOL					
PRC	Azimuth Beamwidth (avg)	65	5°		65°			90° Unit Beam				
	Electrical Downtilt 2-12° 2-12			12°	2-12°							
	Dimensions				2432 x 49	9 x 215 mm	ı (95.8 x 19	.7 x 8.5 in)				

ORDERING OPTIONS Select from the following ordering options

ANTENNA MODEL NUMBER	CONFIGURATION	MOUNTING HARDWARE	MOUNTING PIPE DIAMETER	SHIPPING WEIGHT	MOUNTING HARDWARE WEIGHT
APXVAA4L9TY24-U-J20	ACU-X20-N4 Field Replaceable RET Included	APM40-5E Beam Tilt Kit and APM40-E10T Included	60-120 mm (2.4-4.7 in)	55.5 kg (122 lbs)	8.5 kg (19 lbs)
APXVAA4L9TY24-V-J20	ACU-X20-N4 Field Replaceable RET Included	APM40-1E Direct Pipe No Tilt and APM40-E10T Included	60-120 mm (2.4-4.7 in)	53.3 kg (117 lbs)	6.3 kg (14 lbs)

20

■ Y1 ■ Y2 ■ Y3 ■ Y4

HYBRID FDD/TDD 2432 mm INTEGRATED RET

20

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

Frequency	Range	MHz	Hz (2x) 617-894					
, ,		MHz	617-698 698-806 806-89					
Polarization]		±45°					
C -: -	Over all Tilts	dBi	15.1 ± 0.7	15.5 ± 0.8	15.2 ± 0.6			
Gain	Max Gain	dBi	15.8	16.3	15.8			
Azimuth Beamwidth (3 dB)		degrees	67° ± 6°	65° ± 8°	62° ± 11°			
Elevation Beamwidth (3 dB)		degrees	9.9° ± 0.7°	9.0° ± 0.6°	8.2° ± 0.6°			
Electrical Downtilt		degrees	2-12°					
Impedance		Ohms	50Ω					
VSWR (Retu	ırn Loss)		1.5:1 (-14 dB)					
Passive Inte	ermodulation	dBc		153 (3rd Order for 2x20 W Carriers)				
Front-to-Ba	ck Ratio, Total Power, ± 30°	dB	20 21		19			
Front-to-Ba	ck at 180° Copolar	dB	28	26	28			
Upper Side L	obe Suppression, Peak to +20°	dB	18	17	15			
First Upper	Side Lobe	dB	19	22	23			
Cross-Pol C	Over Sector	dB	7 6		1			
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	18 19 21					
Maximum E	Effective Power Per Port	Watts	300 W					
Cross Polar	Isolation	dB	25	25	25			

20

ELECTRICAL SPECIFICATIONS Mid Band

Interband Isolation

dB

Frequency	Range	MHz			(4x) 1695-2690					
		MHz	1695-1880	1850-1990	1995-2200	2200-2500	2500-2690			
Polarization	1		±45°							
C	Over all Tilts	dBi	16.8 ± 0.9	17.3 ± 0.5	17.7 ± 0.7	17.7 ± 0.6	17.6 ± 0.4			
Gain	Max Gain	dBi	17.7	17.8	18.4	18.3	18.0			
Azimuth Be	eamwidth (3 dB)	degrees	71° ± 8°	64° ± 6°	60° ± 8°	55° ± 5°	55° ± 7°			
Elevation B	eamwidth (3 dB)	degrees	6.2° ± 0.5°	5.8° ± 0.3°	5.3° ± 0.4°	4.8° ± 0.3°	4.6° ± 0.3°			
Electrical D	owntilt	degrees			2-12°					
Impedance		Ohms		50Ω						
VSWR (Retu	urn Loss)		1.5:1 (-14 dB)							
Passive Inte	ermodulation	dBc	-153 (3rd Order for 2x20 W Carriers)							
Front-to-Ba	ick Ratio, Total Power, ± 30°	dB	23	22	22	24	24			
Front-to-Ba	ick at 180° Copolar	dB	30	29	30	32	31			
Upper Side L	Lobe Suppression, Peak to +20°	dB	14	16	16	16	15			
First Upper	Side Lobe	dB	18	19	20	20	20			
Cross-Pol C	Over Sector	dB	7	6	3	2	2			
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	20	22	21	19	16			
Maximum Effective Power Per Port		Watts			200 W					
Cross Polar	Isolation	dB	25	25	25	25	25			
Interband Is	solation	dB	20	20	20	20	20			

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

dB

L SPECIFICATIONS Hi	gh Band	Unit Beam					
nge	MHz	(4x) 3300-4200					
	MHz	3300-3600	3800-4200				
		±45°					
Over all Tilts	dBi	15.9 ± 0.7	15.7 ± 0.7	15.9 ± 0.8			
Max Gain	dBi	16.6	16.4	16.7			
nwidth (3 dB)	degrees	91° ± 12°	88° ± 11°	79° ± 12°			
Elevation Beamwidth (3 dB)		6.2° ± 0.4°	6.2° ± 0.4°	6.0° ± 0.3°			
Electrical Downtilt		2-12°					
Impedance			50Ω				
Loss)		1.5:1 (-14 dB)					
nodulation	dBc	-153 (3rd Order for 2x20 W Carriers)					
Ratio, Total Power, ± 30°	dB	22 22		22			
at 180° Copolar	dB	30	30	31			
e Suppression, Peak to +20°	dB	14	14	15			
de Lobe	dB	16	15	16			
er Sector	dB	12	7	5			
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		21	17	16			
ective Power Per Port	Watts	100 W					
Cross Polar Isolation		25	25	25			
	Over all Tilts Max Gain nwidth (3 dB) mwidth (3 dB) writh Loss) nodulation Ratio, Total Power, ± 30° at 180° Copolar be Suppression, Peak to +20° de Lobe er Sector iscrimination (XPD) Boresight (0°) ective Power Per Port	MHz	MHz MHz MHz 3300-3600 Over all Tilts Max Gain Max Gain Max Gain Megrees Megree	MHz (4x) 3300-4200 MHz 3300-3600 3600-3800 ±45° Over all Tilts dBi 15.9 ± 0.7 15.7 ± 0.7 Max Gain dBi 16.6 16.4 nwidth (3 dB) degrees 91° ± 12° 88° ± 11° nwidth (3 dB) degrees 6.2° ± 0.4° 6.2° ± 0.4° nwidth (3 dB) degrees 2-12° Ohms 50Ω 50Ω nodulation dBc Ratio, Total Power, ± 30° dB 22 22 at 180° Copolar dB 30 30 se Suppression, Peak to +20° dB 14 14 de Lobe dB 16 15 er Sector dB 12 7 iscrimination (XPD) Boresight (0°) dB 21 17 ective Power Per Port Watts 100 W			

ELECTRICAL SPECIFICATIONS High Band				Broadcast Beam				
Frequency F	Range	MHz		3300-4200				
		MHz	3300-3600	3600-3800	3800-4200			
Polarization				±45°				
C	Over all Tilts	dBi	17.3 ± 0.5	17.0 ± 0.5	17.3 ± 0.7			
Gain	Max Gain	dBi	17.8	17.5	18.0			
Azimuth Beamwidth (3 dB)		degrees	65° ± 6°	65° ± 4°	62° ± 4°			
Elevation Beamwidth (3 dB)		degrees	6.6° ± 0.5° 6.2° ± 0.3°		5.9° ± 0.3°			
Electrical Downtilt de		degrees		2-12°				
Impedance		Ohms	50Ω					
Front-to-Bac	ck Ratio, Total Power, ± 30°	dB	25 25		25			
Front-to-Bac	ck at 180° Copolar	dB	33	33	33			
Upper Side L	obe Suppression, Peak to +20°	dB	15	14	15			
First Upper	Side Lobe	dB	20	20	18			
Cross-Pol Over Sector		dB	10	5	1			
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	21	25	21			

Quoted performance parameters are provided to offer typical, peak or range values only and may vary as a result of normal testing, manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to products may be made without notice.

Interband Isolation

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

ELECTRICA	AL SPECIFICATIONS H	gh Band	Service Beam at 0°					
Frequency R	ange	MHz		3300-4200				
		MHz	3300-3600	3300-3600 3600-3800				
Polarization				±45°				
Carr	Over all Tilts	dBi	21.2 ± 0.3	21.0 ± 0.5	21.1 ± 0.5			
Gain	Max Gain	dBi	21.5	21.5	21.6			
Azimuth Beamwidth (3 dB)		degrees	25° ± 1°	25° ± 1° 25° ± 1°				
Elevation Beamwidth (3 dB)		degrees	6.6° ± 0.4°	$6.6^{\circ} \pm 0.4^{\circ}$ $6.2^{\circ} \pm 0.3^{\circ}$				
Electrical Downtilt		degrees		2-12°				
Impedance		Ohms	50Ω					
Front-to-Bac	k Ratio, Total Power, ± 30°	dB	29	28	28			
Front-to-Bac	k at 180° Copolar	dB	35	32	34			
Upper Side Lo	be Suppression, Peak to +20°	dB	17	17	17			
First Upper Side Lobe		dB	17	17	17			
Cross-Pol Over 3dB		dB	23	20	18			
Cross Polar Discrimination (XPD) at Beam Peak		dB	25	22	19			

ELECTRICAL SPECIFICATIONS High Band Service Beam at 30°

Frequency Range		MHz		3300-4200					
		MHz	3300-3600	3800-4200					
Polarization			±45°						
6	Over all Tilts	dBi	20.2 ± 0.4	20.0 ± 0.4	20.5 ± 1.0				
Gain	Max Gain	dBi	20.6	20.4	21.5				
Azimuth Bea	nmwidth (3 dB)	degrees	32° ± 2°	30° ± 2°	24° ± 5°				
Elevation Be	Elevation Beamwidth (3 dB)		6.6° ± 0.3°	6.6° ± 0.3° 6.2° ± 0.2°					
Electrical Do	Electrical Downtilt			2-12°					
Impedance	Impedance		50Ω						
Front-to-Bac	k Ratio, Total Power, ± 30°	dB	25	25 25					
Front-to-Bac	k at 180° Copolar	dB	32	32 32					
Upper Side Lo	obe Suppression, Peak to +20°	dB	17	16	17				
First Upper S	First Upper Side Lobe		17	18	21				
Cross-Pol Over 3dB		dB	18	17	14				
Cross Polar Discrimination (XPD) at Beam Peak		dB	21	20	15				

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

ELECTRICAL SPECIFICATIONS High Band

Calibration & Electrical Parameters

Frequency Range	MHz		3300-4200		
	MHz	3300-3600	3600-3800	3800-4200	
Horizontal Spacing	mm	42			
Transmission from Antenna Ports to CAL Port	dB	-26 ± 2	-26 ± 2	-26 ± 2	
Amplitude Diff Between Antenna Port and CAL Port	dB	< 0.9	< 0.9	< 0.9	
Phase Diff Between Antenna Port and CAL Port degrees		< 7°	< 7°	< 7°	
Same Polarization Isolation	dB	20	20	20	
Different Polarization Isolation	dB	25	25	25	

RET ACTUATOR

Frequency		MHz	617-894	1695-2690	3300-4200			
Model Number			ACU-X20-N4					
Number of RET Actuators				1				
RET ID			R1	R1 Y1 and Y2 P1				
Input Voltage		Vdc	10-30V					
Power Idle State, maximum		Watts		0.5W @ 10V, 1.5W @ 30V				
Consumption Normal Conditions, maximum		Watts	4W @ 10V, 9W @ 30V					
Protocol			3GPP / AISG v2.0					
Tilt Change Du	ration		Less than 15 seconds, typical (may vary depending on antenna type and outdoor temperature)					
Precision		degrees		± 0.1°				
Tilt Change Ca	pability		18,000 minimum					
RET Interface			One AISG Male and One AISG Female					
Field Replaceable Unit			Yes					
Location				Semi-internal				
			l.					

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

BOTTOM VIEW - LABELING

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

ARRAY LAYOUT

ARRAY	FREQUENCY	CONNECTOR	CONNECTOR TYPE	RET	AISG RET UID	
■ R1	617-894 MHz	1-2	(2x) 4.3-10 Female	- R1	RFxxxxxxxxxxx-2R1	
■ R2	617-894 MHz	3-4	(2x) 4.3-10 Female	KI	KFXXXXXXXXXXX-ZK1	
■ Y1	1695-2690 MHz	5-6	(2x) 4.3-10 Female	- Y1	RFxxxxxxxxxxx-2Y1	
■ Y2	1695-2700 MHz	7-8	(2x) 4.3-10 Female		KFXXXXXXXXXXX-Z11	
■ Y3	1695-2690 MHz	9-10	(2x) 4.3-10 Female	- Y2	RFxxxxxxxxxx-2Y2	
■ Y4	1695-2690 MHz	11-12	(2x) 4.3-10 Female	12	KFXXXXXXXXXX-212	
■ P1	3300-4200 MHz	13-14	(2x) 4.3-10 Female			
■ P2	3300-4200 MHz	15-16	(2x) 4.3-10 Female	P1	RFxxxxxxxxxxx-2P1	
■ P3	3300-4200 MHz	17-18	(2x) 4.3-10 Female	7 61	RFXXXXXXXXXXXXZ-ZF1	
■ P4	3300-4200 MHz	19-20	(2x) 4.3-10 Female			

Physical array and port mapping according to AISG naming convention: Left - Center Left - Center Right - Right (seen from front of antenna)

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

MECHANICAL SPECIFICATIONS

Length			mm (in)	2432 (95.8)
Width		mm (in)	499 (19.7)	
Depth		mm (in)	215 (8.5)	
Net Weight	- Antenna Only		kg (lbs)	39 (86)
		Front	N (lbf)	816 (183)
Wind Load		Side	N (lbf)	701 (158)
Rated at 150 km/h (9	73 mph)	Rear	N (lbf)	969 (218)
100 Km/11 (7	о три,	Maximum	N (lbf)	1627 (366)
Survival Wir	nd Speed		km/h (mph)	240 (150)
Connector ⁻	Туре			(20x) 4.3-10 Female, (1x) 4.3-10 Female CAL, (2x) AISG Connectors (1 Male, 1 Female) at Bottom
Radome Co	olor			Light Grey RAL7035
Radome Material			ASA	
Lightning Protection			Direct Ground	
Shipping	Packing Size (Le	ength x Width x Depth)	mm (in)	2642 x 560 x 285 (104.0 x 22.0 x 11.2)
	L		1	I .

ENVIRONMENTAL SPECIFICATIONS

Environmental Standard		ETS 300 019	
Operating Temperature	degrees	-40° to +60° C (-40° to +140° F)	
Product Environmental Compliance		Product is RoHS Compliant	

HYBRID FDD/TDD 2432 mm INTEGRATED RET

APXVAA4L9TY24-U-J20 APXVAA4L9TY24-V-J20

ACCESSORIES Accessories may be ordered separately unless otherwise indicated.

ITEM	MODEL NUMBER	WEIGHT
Beam Tilt Mounting Bracket Kit and Interface Bracket for Pole Diameter 60-120 mm (2.4-4.7 in) Refer to ordering options	APM40-5E and APM40-E10T	8.5 kg (19 lbs)
Direct Pipe No Tilt Bracket Kit and Interface Bracket for Pole Diameter 60-120 mm (2.4-4.7 in) Refer to ordering options	APM40-1E and APM40-E10T	6.3 kg (14 lbs)

INSTALLATION Please read all installation notes before installing product.

Always attach the antenna using all mounting points.

Do not install antenna with the connectors facing upwards.

EXTERNAL DOCUMENT LINKS

APM40 Mounting Kit Series Installation Instructions

NOTES

Specifications follow BASTA guidelines.

For additional mounting information, please check External Document Links.

For Radiating Patterns: Request pattern files